Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya.
Kaidah Dasar Menghitung
Kaidah perkalian (rule of product)
Percobaan 1: p hasil
Percobaan 2: q hasil
Percobaan 1 dan percobaan 2: p q hasil
Kaidah penjumlahan (rule of sum)
Percobaan 1: p hasil
Percobaan 2: q hasil
Percobaan 1 atau percobaan 2: p + q hasil
Contoh 1. Ketua angkatan IF 2002 hanya 1 orang (pria atau wanita, tidak bias gender). Jumlah pria IF2002 = 65 orang dan jumlah wanita = 15 orang. Berapa banyak cara memilih ketua angkatan?
Penyelesaian: 65 + 15 = 80 cara.
Contoh 2. Dua orang perwakilan IF2002 mendatangai Bapak Dosen untuk protes nilai ujian. Wakil yang dipilih 1 orang pria dan 1 orang wanita. Berapa banyak cara memilih 2 orang wakil tesrebut?
Penyelesaian: 65 x 15 = 975 cara.
Perluasan Kaidah Dasar Menghitung
Misalkan ada n percobaan, masing-masing dg pi hasil
1. Kaidah perkalian (rule of product)
p1 x p2 x … x pn hasil
2. Kaidah penjumlahan (rule of sum)
p1 + p2 + … + pn hasil
Contoh 3. Bit biner hanya 0 dan 1. Berapa banyak string biner yang dapat dibentuk jika:
(a) panjang string 5 bit
(b) panjang string 8 bit (= 1 byte)
Penyelesaian:
(a) 2 x 2 x 2 x 2 x 2 = 25 = 32 buah
(b) 28 = 256 buah
Contoh 4. Berapa banyak bilangan ganjil antara 1000 dan 9999 (termasuk 1000 dan 9999 itu sendiri) yang
(a) semua angkanya berbeda
(b) boleh ada angka yang berulang.
Penyelesaian:
(a) posisi satuan: 5 kemungkinan angka (1, 3, 5, 7, 9)
posisi ribuan: 8 kemungkinan angka
posisi ratusan: 8 kemungkinan angka
posisi puluhan: 7 kemungkinan angka
Banyak bilangan ganjil seluruhnya = (5)(8)(8)(7) = 2240 buah.
b) posisi satuan: 5 kemungkinan angka (yaitu 1, 3, 5, 7 dan 9);
posisi ribuan: 9 kemungkinan angka (1 sampai 9)
posisi ratusan: 10 kemungkinan angka (0 sampai 9)
posisi puluhan: 10 kemungkinan angka (0 sampai 9)
Banyak bilangan ganjil seluruhnya = (5)(9)(10)(10) = 4500
Contoh 5. Sandi-lewat (password) sistem komputer panjangnya 6 sampai 8 karakter. Tiap karakter boleh berupa huruf atau angka; huruf besar dan huruf kecil tidak dibedakan. Berapa banyak sandi-lewat yang dapat dibuat?
Penyelesaian:
Jumlah karakter password = 26 (A-Z) + 10 (0-9) = 36 karakter.
Jumlah kemungkinan sandi-lewat dengan panjang 6 karakter: (36)(36)(36)(36)(36)(36) = 366 = 2.176.782.336
Jumlah kemungkinan sandi-lewat dengan panjang 7 karakter: (36)(36)(36)(36)(36)(36)(36) = 367 = 78.364.164.096
umlah kemungkinan sandi-lewat dengan panjang 8 karakter: (36)(36)(36)(36)(36)(36)(36)(36) = 368 = 2.821.109.907.456
Jumlah seluruh sandi-lewat (kaidah penjumlahan) adalah
2.176.782.336 + 78.364.164.096 + 2.821.109.907.456 = 2.901.650.833.888 buah.
Prinsip Inklusi-Eksklusi
Setiap byte disusun oleh 8-bit. Berapa banyak jumlah byte yang dimulai dengan ‘11’ atau berakhir dengan ‘11’?
Penyelesaian:
Misalkan
A = himpunan byte yang dimulai dengan ‘11’,
B = himpunan byte yang diakhiri dengan ‘11’
A Ç B
= himpunan byte yang berawal dan
berakhir dengan ‘11’
maka
A È B
= himpunan byte yang berawal dengan
‘11’ atau berakhir dengan ‘11’
½A½ = 26 = 64, ½B½ = 26 = 64, ½A Ç B½ = 24 = 16.
maka
½A È B½ = ½A½ + ½B½ – ½A Ç B½
= 26 + 26 – 16 = 64 + 64 – 16 = 112.
Permutasi
Definisi
Permutasi adalah jumlah urutan berbeda dari pengaturan objek-objek.
Permutasi merupakan bentuk khusus aplikasi kaidah perkalian.
Misalkan jumlah objek adalah n, maka
urutan pertama dipilih dari n objek,
urutan kedua dipilih dari n – 1 objek,
urutan ketiga dipilih dari n – 2 objek,
…
urutan terakhir dipilih dari 1 objek yang tersisa.
Menurut kaidah perkalian, permutasi dari n objek adalah
n(n – 1) (n – 2) … (2)(1) = n!
Contoh 6. Berapa banyak “kata” yang terbentuk dari kata “HAPUS”?
Penyelesaian:
Cara 1: (5)(4)(3)(2)(1) = 120 buah kata
Cara 2: P(5, 5) = 5! = 120 buah kata
Contoh 7. Berapa banyak cara mengurutkan nama 25 orang mahasiswa?
Penyelesaian: P(25, 25) = 25!
Definisi 2. Permutasi r dari n elemen adalah jumlah kemungkinan urutan r buah elemen yang dipilih dari n buah elemen, dengan r n, yang dalam hal ini, pada setiap kemungkinan urutan tidak ada elemen yang sama.
Contoh 8. Berapakah jumlah kemungkinan membentuk 3 angka dari 5 angka berikut: 1, 2, 3, 4 , 5, jika:
(a) tidak boleh ada pengulangan angka, dan
(b) boleh ada pengulangan angka.
Penyelesaian:
(a) Dengan kaidah perkalian: (5)(4)(3) = 120 buah
Dengan rumus permutasi P(5, 3) = 5!/(5 – 3)! = 120
(b) Tidak dapat diselesaikan dengan rumus permutasi.
Dengan kiadah perkalian: (5)(5)(5) = 53 = 125.
Contoh 9. Kode buku di sebuah perpustakaan panjangnya 7 karakter, terdiri dari 4 huruf berbeda dan diikuti dengan 3 angka yang berbeda pula?
Penyelesaian: P(26, 4) P(10,3) = 258.336.000
SUMBER
Tidak ada komentar:
Posting Komentar